Начало подлинно научных исследований в области электричества и магнетизма было положено английским естествоиспытателем и придворным врачом королевы Вильямом Гильбертом (1544 — 1603). В отличие от исследований предшественников, которые познание природы сводили к интуитивным умозаключениям часто с привлечением потусторонних сил, исследования Гильберта носили строго экспериментальный характер.

Заинтересовавшись опытами древнегреческого мудреца, с описанием которых он ознакомился в изложении Аристотеля, Гильберт повторил их и, убедившись в справедливости пересказанного древним философом, значительно расширил рамки экспериментов. Отличаясь необыкновенной изобретательностью, он придумывал все новые и новые опыты и анализировал полученные результаты. Итогом многолетних исследований Гильберта явился труд, вышедший в Лондоне в 1600 г., под названием «О магните, магнитных телах и о большом магните — Земле. Новая физиология, доказанная множеством аргументов и опытов». В этом сочинении было приведено описание проведенных экспериментов.

Среди огромного количества фактов, изложенных в этой книге, заметно выделяется описание экспериментов из области электричества. Для своих исследований Гильберт использовал изобретенный им прибор — версор. Устройство этого прибора понятно из описания, приводимого ученым: «Для того чтобы иметь возможность узнать на основании ясного опыта, каким образом происходит такое притяжение и каковы материи, притягивающие таким образом другие тела... сделай себе из любого металла стрелку длиной в 3 или 4 дюйма1 достаточно подвижную на своей игле, наподобие магнитного указателя. К одному концу ее приложи янтарь или блестящий и гладкий камешек, слегка потерев его: стрелка немедленно поворачивается».

С помощью этого прибора Гильберт установил, что «не только янтарь... привлекает к себе тела, но то же делают алмаз, сапфир, карбункул, камень, ирис, опал, аметист, ... берилл и кристалл. Подобными же притягательными силами обладают, по-видимому, стекло (особенно светлое и блестящее), затем поддельные камни из стекла или кристалла, сурьмяное стекло, большинство флуоров из рудников и белемениты. Притягивают также сера, мастика и сургуч, составленный из лака, окрашенного в разные цвета...

Все они притягивают не только соломинки и мякину, но и все металлы, дерево, листья, камни, земли, даже воду, растительное масло и все, что подвластно нашим чувствам». К веществам, не поддающимся электризации, Гильберт относит мрамор, жемчуг, кость и металлы.

В этой же работе Гильберт проводит четкое разделение электрических и магнитных явлений. В основу этого деления исследователем положено различие между силами притяжения намагниченных и наэлектризованных тел и влияние внешних условий на силу притяжения. «Одна (магнитная сила. — В. К.) выделяется многими свойствами и очень мощна, другая (электрическая. — В. К.) — темна, менее мощна и по большей части как бы заключена в некие темницы, почему эту силу иногда приходится пробуждать трением или натиранием до тех пор, пока тело незаметно не нагреется, не даст истечения и не приобретет блеска. Ведь испорченный воздух, выдыхаемый изо рта, или более сырой воздух подавляет это свойство; если вставить между телами бумагу или полотно, то никакого движения не будет. Магнит же без натирания и нагревания (сухой или облитый жидкостью) как на воздухе, так и в воде зовет к себе магнитные тела, даже если вставить преграду в виде очень твердых тел, деревянных досок или толстых каменных или металлических пластинок. Магнит возбуждает только магнитные тела, а к электрическим телам несется все. Магнит поднимает большие грузы; ... электрические силы притягивают лишь тела очень маленького веса...»

С легкой руки Гильберта электричество и магнетизм в течение многих последующих десятилетий будут рассматриваться как два явления, совершенно не связанные между собой.

Вызывает удивление тот факт, что такой искусный экспериментатор, каким был Гильберт, не смог обнаружить способность металлов к электризации. Не сумел он установить и факт отталкивания электрических зарядов, хотя и проводил эксперименты, которые должны были привести его к этому. Однако и сделанного им достаточно, чтобы считать его пионером целенаправленных исследований в области электричества и магнетизма. Галилей высоко оценил заслуги Гильберта как экспериментатора и основателя учения об электричестве и магнетизме. «Я воздаю величайшую хвалу, — пишет Галилей, — и завидую этому автору, так как ему пришло на ум столь поразительное представление о вещи, бывшей в руках у бесконечного числа других людей возвышенного ума, но никем не подмеченной; он кажется мне достойным величайшей похвалы также и за много сделанных им новых и достоверных наблюдений... И я не сомневаюсь, что с течением времени эта новая наука будет совершенствоваться путем новых наблюдений и в особенности путем правильных и необходимых доказательств. Но от этого не должна уменьшиться слава первого наблюдателя, наоборот, я ставлю очень высоко, например, первого изобретателя лиры (хотя, нужно думать, инструмент этот был сделан примитивным образом и звучал очень грубо) и ценю его не менее, чем сотни других артистов, которые в последующие века довели профессию музыканта до высокого совершенства»2.

Описывая дальнейшее развитие исследований в области электрических явлений, нельзя не упомянуть итальянского исследователя Никола Кабео (1585 — 1650), который в 1629 г. выпустил трактат «Философия магнетизма». В этом трактате Кабео предпринял смелую попытку объяснить причину притяжения наэлектризованных тел. Экспериментально им было установлено, что наэлектризованные тела по весу не отличаются от ненаэлектризованных. Электризуя одно и то же тело тысячи раз, экспериментатор не обнаружил ни малейшего изменения в весе. Этот факт натолкнул его на мысль, что электрическая жидкость, испускаемая наэлектризованным телом, расталкивает и сжимает перед собой воздух. Там, где давление воздуха достигнет некоторого предела, электрическая жидкость возвращается обратно к наэлектризованному телу, увлекая за собой легкие тела. Постоянство в весе тел, независимо от состояния электризации, подтверждало это предположение. Объяснение Кабео несколько наивно, однако важен сам факт, что ученые начинают задумываться над причинами этого таинственного явления.

Следующей заметной вехой на пути развития электричества были исследования магдебургского инженера и администратора Отто фон Герике (1602 — 1686). Заинтересовавшись электрическими явлениями, Герике проштудировал трактат Гильберта и, желая получить более сильные электрические эффекты, пришел к идее создания специального устройства для получения больших зарядов. Для осуществления своих замыслов Герике изготовил машину, устройство которой можно понять из данного им описания. Для желающих повторить проведенные им опыты Герике советует взять стеклянный баллон «величиною с детскую голову», наполнить его растолченною серой и расплавить ее. После охлаждения серы баллон нужно разбить и вынуть серный шар. Для того чтобы удобно было использовать этот шар как генератор электрических зарядов, необходимо просверлить в нем отверстие по диаметру и вставить в это отверстие металлический стержень. Если стержень расположить горизонтально на  опорах, то можно легко осуществить вращение серного шара. Натирая этот вращающийся шар руками или кожаными подушками, Герике удалось получить на нем большие заряды.

С помощью этой машины Герике провел ряд экспериментов по изучению электрических явлений. Он первым из ученых установил, что заряженные тела могут не только притягиваться, но и отталкиваться; им же было экспериментально доказано, что электричество может передаваться на расстояние через некоторые тела, названные впоследствии проводниками, Однако опыты немецкого ученого остались незамеченными на фоне его выдающихся исследований по получению и изучению свойств разреженного воздуха, и поэтому другим ученым пришлось заново открывать свойства электричества, обнаруженные Герике.

Затем эстафету в постепенно ускоряющемся процессе развития учения об электричестве принимает французский ученый Ш. Ж. Дюфе (1698 — 1739). Дюфе пошел дальше своих предшественников. Он установил существование двух родов электричества, получающихся различными способами. Один из них, который возникал при натирании стекла и горного хрусталя, он назвал «стеклянным»; другой, появляющийся при натирании смолы или янтаря, был им назван «смоляным» электричеством. Отличие этих двух родов электричества состояло, по словам Дюфе, в том, что однородные электричества, например натертые стекло и горный хрусталь, отталкивались, а разнородные электричества — «стеклянное» и «смоляное» — притягивались. Исходя из установленного факта, Дюфе предполагает возможность объяснения ряда ранее наблюдаемых явлений и выражает надежду на открытие новых. Описанные наблюдения дают основание считать Дюфе автором качественного закона взаимодействия электрических зарядов: одноименные заряды отталкиваются, разноименные — притягиваются.

Дюфе первым из ученых высказал мысль об электрической природе грома и молнии. «Возможно, — пишет Дюфе, — что в конце концов удастся найти средства для получения электричества в больших масштабах и, следовательно, усилить мощь электрического огня, который во многих из этих опытов представляется как бы одной природы с громом и молнией». Публикации Дюфе вызвали к жизни новые идеи и стимулировали проведение новых экспериментов во все еще таинственной области науки — в области электричества.

Наряду с подлинными исследователями, занятыми упорными поисками истины, в это же время в различных странах появляется огромная армия людей, далеких от науки, которые занимались электрическими экспериментами не по призванию души, а по велению моды. С увеличением числа лиц, занимающихся электрическими исследованиями, растет и число сенсационных «открытий»: электричеством «оживляют» собак, кроликов, птиц; не за горами и факт «оживления» человека. «Экспериментаторы» сообщают, что из яиц, подвергшихся электризации, цыплята вылупляются раньше, чем из ненаэлектризованных; семена сельскохозяйственных культур прорастают скорее и дают большие урожаи, если их перед посадкой наэлектризовать. Все явления природы, в том числе и землетрясения, объяснялись электричеством. Электричество захватило всех; человечество уже догадывалось о возможностях его практического применения.

Все-таки драгоценные зерна истины попадались и в этой огромной по тем временам информации, заполнившей научные журналы. Так, в 1745 г. в Померании Э. Клейстом, а в 1746 г. в Лейдене П. Мушенбреком (1692 — 1761) была создана «лейденская банка», первый конденсатор — прибор, способный накапливать и удерживать значительные заряды. В мае 1752 г. французский ученый Т. Ф. Далибар (1703 — 1779), а в июне этого же года американский исследователь Б. Франклин (1706 — 1790) экспериментально установили электрическую природу молнии. Кроме того, Франклин вскоре предпринял первую попытку объяснения электрических явлений на основе созданной им теории. Над выяснением электрической природы молнии много и успешно трудились русские ученые М. В. Ломоносов (1711 — 1765) и Г. В. Рихман (1711 — 1753).

Результатом этих исследований явилась теория грозового электричества, разработанная Ломоносовым. Несколько позже Ф. Эпинус (1724 — 1802), с 1757 г. член Российской академии наук, выдвинул гипотезу электрического действия на расстоянии и с ее помощью объяснил открытое Дж. Кантоном (1718 — 1772) явление электростатической индукции. Кроме того, в своей капитальной работе «Опыт теории электричества и магнетизма» Эпинус спорит с Гильбертом, указывая, что между электрическими и магнитными явлениями сходства больше, чем различия. В эти же годы появляется первый прибор, позволяющий оценить величину электрического заряда — электроскоп, в разработке которого участвовали независимо друг от друга французский ученый Ж. Нолле (1700 — 1770), русский физик Рихман и другие исследователи.

Закончить перечисление открытий указанного периода можно фактом установления количественного закона взаимодействия электрических зарядов. Изучая законы кручения нитей и проволок, французский ученый Ш. О. Кулон (1736 — 1806) в 1784 г. нашел, что упругая сила, возникающая в нити при кручении, пропорциональна углу закручивания и зависит от длины нити, ее диаметра и материала, из которого она изготовлена. Используя обнаруженные им зависимости, Кулон сконструировал и изготовил установку, получившую впоследствии название крутильных весов. С помощью крутильных весов Кулон приходит к открытию количественного закона взаимодействия электрических зарядов, известного в настоящее время как закон Кулона.

Далее начинается качественно новый этап в развитии учения об электричестве, в результате которого человечество пришло к возможности практического использования электрической энергии.

  • 1. 1 дюйм = 10 линиям = 25,4 мм.
  • 2. Галилей Г. Диалог о двух главнейших системах мира — птолемеевой и коперниковой. М. — Л., 1948, с. 290 — 291.

Добавить комментарий

Plain text

  • HTML-теги не обрабатываются и показываются как обычный текст
  • Адреса страниц и электронной почты автоматически преобразуются в ссылки.
  • Строки и параграфы переносятся автоматически.
CAPTCHA
Этот вопрос задается для того, чтобы выяснить, являетесь ли Вы человеком или представляете из себя автоматическую спам-рассылку.